Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones.

نویسندگان

  • O Ullrich
  • T Reinheckel
  • N Sitte
  • R Hass
  • T Grune
  • K J Davies
چکیده

The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A putative role for nicotinamide adenine dinucleotide-promoted nuclear protein modification in the antitumor activity of N-methyl-N-nitrosourea.

Incubation of HeLa cells with the anticancer agent N-methyl-N-nitrosourea (MNU) results in: (a) depression of intracellular nicotinamide adenine dinucleotide levels; (b) stimulation of the chromatin-associated, chromosomal protein-modifying enzyme polyadenosine diphosphoribose [poly(ADP-ribose)] polymerase, which uses nicotinamide adenine dinucleotide as substrate; and (c) some fragmentation of...

متن کامل

Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair.

In DNA excision repair of mammalian cells, the processing of ADP-ribose by the poly ADP-ribosylation system of chromatin is stimulated several thousand-fold. Most of this turnover is associated with the automodification reaction of the nuclear enzyme poly(ADP-ribose) polymerase and the degradation of polymerase-bound polymers by the enzyme poly(ADP-ribose) glycohydrolase. The automodification c...

متن کامل

Optimizing the energy status of skin cells during solar radiation.

Ionizing- and ultraviolet-radiation cause cell damage or death by directly altering DNA and protein structures and by production of reactive oxygen species (ROS) and reactive carbonyl species (RCS). These processes disrupt cellular energy metabolism at multiple levels. The formation of DNA strand breaks activates signaling pathways that consume NAD, which can lead to the depletion of cellular A...

متن کامل

Activation of DNA ligase by poly(ADP-ribose) in chromatin.

To elucidate the molecular mechanism by which poly(ADP-ribose) participates in DNA excision repair, we examined the effect of poly(ADP-ribose) on DNA ligase activity in DNA/histone and reconstituted chromatin systems. The ligase activity was markedly inhibited by histones; the inhibition varied depending on histone subfraction and DNA/histone ratio. Poly(ADP-ribose), either exogenous or synthes...

متن کامل

Effect of 1-methyl-1-nitrosourea on poly(adenosine diphosphate-ribose) polymerase activity at the nucleosomal level.

The stimulation of poly(adenosine diphosphate ribose) [poly(ADP-ribose)] polymerase activity at the nuclear level after damage of HeLa cells by 1-methyl-1-nitrosourea has been previously reported. We have observed a similar activation of the enzyme after treatment of cells with MNU at the nucleosomal level of chromatin (greater than 1N). This stimulation of enzyme activity did not occur through...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 11  شماره 

صفحات  -

تاریخ انتشار 1999